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Abstract A numerically effective procedure for determining weakly reversible
chemical reaction networks that are linearly conjugate to a known reaction network is
proposed in this paper. The method is based on translating the structural and algebraic
characteristics of weak reversibility to logical statements and solving the obtained
set of linear (in)equalities in the framework of mixed integer linear programming.
The unknowns in the problem are the reaction rate coefficients and the parameters of
the linear conjugacy transformation. The efficacy of the approach is shown through
numerical examples.
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1 Introduction

A chemical reaction network is given by sets of reactants reacting at prescribed rates
to form sets of products. The mathematical study of such networks has been applied
recently to such fields as industrial chemistry, systems biology, gene regulation, among
others [10,19,28]. There has also been significant theoretical work in the literature on
such questions as persistence [1–3], multistability [8,9,26], monotonicity [5,4], the
global attractor conjecture for complex balanced systems [1,2,7,13], and conjugacy
of reaction networks [11,21].

One problem which has attracted recent attention has been that of determining when
two reaction networks can exhibit the same qualitative dynamics despite disparate net-
work structure. It has been long known that two networks can given rise to the same
governing set of differential equations under the assumption of mass-action kinetics
[22,20]. In [11] and [29], the authors complete the question of what network structures
can given rise to a set of governing differential equations. This work is extended in
[21] to networks which do not necessarily have the same set of differential equations
but rather have trajectories related by a non-trivial linear transformation.

The problem of algorithmically determining when a network has the same govern-
ing dynamics as another network satisfying specified properties was first addressed
in [30] where the author presented a mixed-integer linear programming (MILP) algo-
rithm capable of determining sparse and dense realizations, i.e. networks with the
fewest or greatest number of reactions capable of generating the given dynamics. This
line of research was continued in [31] in which the authors extended the algorithm to
complex and detailed balanced networks, and in [33] in which the authors addressed
the problem of finding dense weakly reversible realizations.

In this paper we show how the problem of determining weakly reversible realiza-
tions presented in [33] can be reformulated as a linear constraint within the established
MILP framework. This reformulation significantly eases the computational cost asso-
ciated with the problem which had previously been solved through successive appli-
cations of an optimization algorithm and checking for weak reversibility with one
of Kosaraju’s, Tarjan’s or Gabow’s algorithm [6,23]. We also extend the algorithm
to encompass the linearly conjugate networks introduced in [21]. We show how the
algorithm can be used to effortlessly reproduce results from the literature and easily
handle large-scale networks not yet considered.

2 Background

In this section we present the terminology and notation relevant to chemical reaction
networks and the main results from the literature upon which we will be building.

2.1 Chemical reaction networks

We will consider the chemical species or reactants of a network to be given by the set
S = {X1, X2, . . . , Xn}. The combined elements on the left-hand and right-hand side
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of a reaction are given by linear combinations of these species. These combined terms
are called complexes and will be denoted by the set C = {C1, C2, . . . , Cm} where

Ci =
n∑

j=1

αi j X j , i = 1, . . . , m

and the αi j are nonnegative integers called the stoichiometric coefficients. We define
the reaction set to be R = {

(Ci , C j ) | Ci reacts to form C j
}

where the property
(Ci , C j ) ∈ R will more commonly be denoted Ci → C j . To each (Ci , C j ) ∈ R
we will associate a positive rate constant ki j > 0 and to each (Ci , C j ) �∈ R we will
set ki j = 0. The triplet N = (S, C,R) will be called the chemical reaction network.

The above formulation naturally gives rise to a directed graph G(V, E) where the
set of vertices is given by V = C, the set of directed edges is given by E = R,
and the rate constants ki j corresponds to the weights of the edges from Ci to C j .
In the literature this has been termed the reaction graph of the network [20]. Since
complexes may be involved in more than one reaction, as a product or a reactant,
there is further graph theory we may consider. A linkage class is a maximally con-
nected set of complexes, that is to say, two complexes are in the same linkage class
if and only if there is a sequence of reactions in the reaction graph (of either direc-
tion) which connects them. A reaction network is called reversible if Ci → C j for
any Ci , C j ∈ C implies C j → Ci . A reaction network is called weakly reversible if
Ci → C j for any Ci , C j ∈ C implies there is some sequence of complexes such that
Ci = Cμ(1) → Cμ(2) → · · · → Cμ(l−1) → Cμ(l) = C j .

A directed graph is called strongly connected if there exists a directed path from
each vertex to every other vertex. A strongly connected component of a directed graph
is any set of vertices for which paths exists from each vertex in the set to every other
vertex in the set. For a weakly reversible network, the linkage classes clearly corre-
spond to the strongly connected components of the reaction graph.

Assuming mass-action kinetics, the dynamics of the specie concentrations over
time is governed by the set of differential equations

dx
dt

= Y · Ak · Ψ (x) (1)

where x = [x1 x2 · · · xn]T is the vector of reactant concentrations. The stoichiome-
tric matrix Y contains entries [Y ]i j = α j i and the Kirchhoff or kinetics matrix Ak is
given by

[Ak]i j =
{−∑m

l=1,l �=i kil , if i = j
k ji if i �= j.

(2)

Finally, the mass-action vector Ψ (x) is given by

Ψ j (x) =
n∏

i=1

x
[Y ]i j
i , j = 1, . . . , m. (3)
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2.2 Sparse and dense realizations

Under the assumption of mass-action kinetics, it is possible for two reaction networks
N (1) and N (2) to give rise to the same set of governing differential equations. In other
words, it is possible that

Y (1) · A(1)
k · Ψ (1)(x) = Y (2) · A(2)

k · Ψ (2)(x) = f(x), ∀ x ∈ R
n
>0

where Y (i), A(i)
k , and Ψ (i)(x), i = 1, 2, are the stoichiometric matrices, kinetics matri-

ces, and mass-action vectors defined for N (1) and N (2) respectively. The networks
N (1) and N (2) are called different realizations of the kinetics f(x) although it will
sometimes be more convenient to consider N (1) as an alternative realization of N (2)

or vice-versa.
In [30] the author presents an algorithm for producing sparse and dense alternative

realizations of a given network N ′, i.e. realizations with the fewest and greatest num-
ber of reactions capable of generating the same kinetics (1) as that given by N ′. Key
to the analysis is fixing the matrix Y to contain only the (source or product) complexes
corresponding to the network N ′. The problem of finding an alternative realization N
of N ′ then becomes one of finding a kinetics matrix Ak such that

Y · Ak · Ψ (x) = Y · A′
k · Ψ (x).

If we set M = Y · A′
k and impose that Ak be a kinetics matrix, dynamical equivalence

can be guaranteed by the conditions

(DE)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y · Ak = M
m∑

i=1

[Ak]i j = 0, j = 1, . . . , m

[Ak]i j ≥ 0, i, j = 1, . . . , m, i �= j
[Ak]i i ≤ 0, i = 1, . . . , m.

(4)

A sparse (respectively, dense) realization is given by a matrix Ak satisfying (4) with
the most (respectively, least) off-diagonal entries which are zeroes. A correspondence
between the non-zero off-diagonal entries in Ak and a positive integer value can be
made by considering the binary variables δi j ∈ {0, 1} which will keep track of whether
a reaction is ‘on’ or ‘off’, i.e. we have

δi j = 1 ↔ [Ak]i j > ε, i, j = 1, . . . , m, i �= j

for some sufficiently small 0 < ε 
 1, where the symbol ‘↔’ denotes the logical
relation ‘if and only if’. These proposition logic constraints for the structure of a net-
work can then be formulated as the following linear mixed-integer constraints (see,
for example, [25]):
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(S)

⎧
⎨

⎩

0 ≤ [Ak]i j − εδi j , i, j = 1, . . . , m, i �= j
0 ≤ −[Ak]i j + ui jδi j , i, j = 1, . . . , m, i �= j
δi j ∈ {0, 1} , i, j = 1, . . . , m, i �= j,

(5)

where ui j > 0 for i, j = 1, . . . , m, i �= j . The number of reactions present in the
network corresponding to Ak is then given by the sum of the δi j ’s so that the problem
of determining a sparse network corresponds to satisfying the objective function

(Sparse)

⎧
⎨

⎩ minimize
m∑

i, j=1,i �= j

δi j (6)

over the constraint sets (4) and (5). Finding a dense network corresponds to maximiz-
ing the same function, which can also be stated as a minimization problem as

(Dense)

⎧
⎨

⎩ minimize
m∑

i, j=1,i �= j

−δi j . (7)

2.3 Weakly reversible networks

Weakly reversible networks are a particularly important class of reaction networks
because strong properties are known about their dynamics. Under a supplemental
condition, which is easily derived from the reaction graph alone, it is known that there
is a unique positive equilibrium concentration within each invariant space of the net-
work and that that equilibrium concentration is at least locally asymptotically stable
[15,18,20].

In [33] the authors introduce an algorithm for determining dense weakly reversible
realizations of a given kinetics. The algorithm is based on the fact that there are no
cycles involving elements in different strongly connected components of a reaction
network [6], and that for a fixed complex set the structure of the dense realization of
a network is unique and contains the structures of all other possible realizations as
sub-graphs [32]. Omitting technical details, the algorithm can be summarized as:

1. Set the matrices Y and M and initialize K = {}.
2. Compute a dense realization Ak forcing the edges in K to be excluded.
3. Check whether Ak is weakly reversible (if so, end algorithm and return Ak).
4. Find all edges in Ak which lead from one strongly connected component to another

and add them to K.
5. Check whether these edges may be removed (if so, repeat steps (2)–(4); if not, end

algorithm and return Ak = 0).

The algorithm has the drawbacks that it can only compute dense realizations and
not sparse ones, and that it requires potentially multiple MILP optimizations which
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are known to be NP-hard. In Sect. 3.1 we will present a method for determining both
dense and sparse weakly reversible realizations in a single MILP optimization step.

3 Original results

In this section, we extend the results of [33] by showing how the requirement of weak
reversibility can be formulated as a linear constraint. Consequently, the question of
determining a sparse or dense weakly reversible realization can now be handled in a
single MILP optimization step. We also extend this framework to cover the linearly
conjugate networks introduced in [27].

3.1 Weak reversibility as a linear constraint

In this section we show that the requirement of weak reversibility can be formulated
as a linear constraint. We require the following classical result about weakly reversible
networks, which is modified from Theorem 3.1 of [16] and Proposition 4.1 of [14]:

Theorem 1 Let Ak be a kinetics matrix and let Λi , i = 1, . . . , �, denote the support of
the i th linkage class. Then the reaction graph corresponding to Ak is weakly reversible
if and only if there is a basis of ker(Ak),

{
b(1), . . . , b(�)

}
, such that, for i = 1, . . . , �,

b(i) =
{

b(i)
j > 0, j ∈ Λi

b(i)
j = 0, j �∈ Λi .

An immediate consequence of Theorem 1 is that there is a vector b ∈
R

m
>0 ∩ ker(Ak) if and only if the reaction graph corresponding to Ak is weakly

reversible. In other words, we can guarantee weak reversibility by imposing the con-
dition

Ak · b = 0 (8)

for some b ∈ R
m
>0. This is a nonlinear constraint in the ki j ’s and b j ’s. In order to make

it linear, we consider the matrix Ãk with entries

[ Ãk]i j = [Ak]i j · b j . (9)

It is clear from (9) that Ãk encodes a kinetics matrix and that 1 ∈ R
m (the m-dimen-

sional vector containing only ones) lies in ker( Ãk). Moreover, it is easy to see that
Ãk encodes a weakly reversible network if and only if Ak corresponds to a weakly
reversible network. We can therefore check weak reversibility of the chemical reaction
network corresponding to Ak with the linear conditions

123



280 J Math Chem (2012) 50:274–288

(WR′)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

i=1

[ Ãk]i j = 0, j = 1, . . . , m

m∑

i=1

[ Ãk] j i = 0, j = 1, . . . , m

[ Ãk]i j ≥ 0, i, j = 1, . . . , m, i �= j
[ Ãk]i i ≤ 0, i = 1, . . . , m.

(10)

By solving for the diagonal elements of Ãk , the set of constraints (10) can be simplified
to

(WR)

⎧
⎪⎨

⎪⎩

m∑

i=1,i �= j

[ Ãk]i j =
m∑

i=1,i �= j

[ Ãk] j i , j = 1, . . . , m

[ Ãk]i j ≥ 0, i, j = 1, . . . , m, i �= j.

(11)

No condition comparable to Y ·Ak = M exists for the matrix Ãk so that we are left to
optimization with respect to the internal entries of both Ak and Ãk . Given appropriate
choices of 0 < ε 
 1 and ui j > 0, i, j = 1, . . . , m, i �= j , we can impose

(WR-S)
{

0 ≤ [ Ãk]i j − εδi j , i, j = 1, . . . , m, i �= j
0 ≤ −[ Ãk]i j + ui jδi j , i, j = 1, . . . , m, i �= j

(12)

as well as (5) to ensure that both Ak and Ãk contain zero and non-zero entries in the
same places so that they correspond to reaction graphs with the same structure.

3.2 Linear conjugacy

In [21] the authors extended the concept of dynamical equivalence to linear conjugacy.
In their framework, two networks N and N ′ are said to be linearly conjugate if there
is a linear mapping which takes the flow of one network to the other. The case of two
networks being realizations of the same kinetics is encompassed as a special case of
linear conjugacy taking the transformation to be the identity. (For a more complete
introduction to the notion of dynamical equivalence and conjugacy see [24] or [34].)

Importantly, linearly conjugate networks share the same qualitative dynamics (e.g.
number and stability of equilibria, persistence/extinction of species, dimensions of
invariant spaces, etc.). Similarly with different realizations of the same kinetics (1),
if a network with unknown kinetics is linearly conjugate to a network with known
dynamics, then the qualitative properties of the second network are transferred to the
first.

The main result of [21] is the following. We have adopted the notation to match
that contained in this paper. The notation is sufficiently distinct that we will prove the
result independently here.
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Theorem 2 Consider two mass-action systems N = (S, C,R) and N ′ = (S, C′,R′)
and let Y be the stoichiometric matrix corresponding to the complexes in either net-
work. Consider a kinetics matrix Ak corresponding to N and suppose that there is a
kinetics matrix Ab with the same structure as N ′ and a vector c ∈ R

n
>0 such that

Y · Ak = T · Y · Ab (13)

where T = diag {c}. Then N is linearly conjugate to N ′ with kinetics matrix

A′
k = Ab · diag {Ψ (c)} . (14)

Proof Let Φ(x0, t) correspond to the flow of (1) associated to the reaction network
N . Consider the linear mapping h(x) = T −1 · x where T =diag{c}. Now define
Φ̃(y0, t) = T −1 · Φ(x0, t) so that Φ(x0, t) = T · Φ̃(y0, t).

Since Φ(x0, t) is a solution of (1) we have

Φ̃ ′(y0, t) = T −1 · Φ ′(x0, t)

= T −1 · Y · Ak · Ψ (Φ(x0, t))

= T −1 · T · Y · Ab · Ψ (T · Φ̃(y0, t))

= Y · Ab · diag {Ψ (c)} · Ψ (Φ̃(y0, t)).

It is clear that Φ̃(y0, t) is the flow of (1) corresponding to the reaction network N ′
with the kinetics matrix given by (14). We have that h(Φ(x0, t)) = Φ̃(h(x0), t) for
all x0 ∈ R

n
>0 and t ≥ 0 where y0 = h(x0) since y0 = Φ̃(y0, 0) = T −1 · Φ(x0, 0) =

T −1 · x0. It follows that the networks N and N ′ are linearly conjugate and we are
done.

While the results of [21] give conditions for two networks to be linearly conju-
gate, and therefore exhibit the same qualitative dynamics, no general methodology is
provided for determining linearly conjugate networks when only a single network is
provided.

In cases where the dynamics of a network N is suspected to behave like a weakly
reversible network, it is beneficial to extend the optimization algorithm outlined in
Sect. 3.1 to linearly conjugate networks. This can be accomplished by replacing the
set of constraints (4) with

(LC)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y · Ab = T −1 · M
m∑

i=1

[Ab]i j = 0, j = 1, . . . , m

[Ab]i j ≥ 0, i, j = 1, . . . , m, i �= j
[Ab]i i ≤ 0, i = 1, . . . , m
ε ≤ c j ≤ 1/ε, j = 1, . . . , n

(15)
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where M = Y · Ak, T = diag {c}, and 0 < ε 
 1, and replacing the set of constraints
(5) by

(LC-S)

⎧
⎨

⎩

0 ≤ [Ab]i j − εδi j , i, j = 1, . . . , m, i �= j
0 ≤ −[Ab]i j + ui jδi j , i, j = 1, . . . , m, i �= j
δi j ∈ {0, 1} , i, j = 1, . . . , m, i �= j,

(16)

where ui j > 0 for i, j = 1, . . . , m, i �= j .
Ab has the same structure as the kinetics matrix A′

k corresponding to the conju-
gate network, and this matrix has the same structure as the matrix Ãk given by (9)
(replacing Ak by A′

k). Consequently, the problem of determining a sparse or dense
weakly reversible network which is linearly conjugate to a given kinetics can be given
by optimizing either (6) or (7), respectively, over the constraint sets (15), (16), (11),
and (12). The kinetics matrix A′

k for the linearly conjugate network is given by (14).

4 Examples

In this section we will consider two examples from the literature which demonstrate
how the MILP optimization algorithm outlined in Sect. 3.2 is capable of efficiently
finding sparse and dense weakly reversible networks which are linearly conjugate to
a given network N . We also consider one new example which illustrates how the
algorithm is capable of finding networks with linearly conjugate dynamics for which
no trivial linear conjugacy exists.

Example 1 Consider the chemical reaction network N given by

X1 + 2X2
α−→ X1

N : 2X1 + X2
1−→ 3X2

X1 + 3X2
1−→ X1 + X2

1−→ 3X1 + X2.

This network was first considered in [21] where the authors showed that it was
linearly conjugate to a specified weakly reversible network for all values of α > 0.
It was further analysed with the value α = 1.5 in [33] where the authors found a
dense weakly reversible realization through successive MILP optimizations. We will
reproduce this result using our one-step MILP algorithm and also produce a sparse
realization.

We have

Y =
[

1 1 2 0 1 1 3
2 0 1 3 3 1 1

]

and

M =
[

0 0 −2 0 0 2 0
−3 0 2 0 −2 0 0

]
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and set ε = 1/α = 2/3 and ui j = 20, i, j = 1, . . . , 7, i �= j . The MILP problem
for a dense weakly reversible linearly conjugate network, possibly accounting for a
non-trivial linear conjugacy mapping, is

minimize
7∑

i, j=1

−δi j

over the constraint set

Y · Ab = T −1 · M
m∑

i=1

[Ab]i j = 0, j = 1, . . . , m

m∑

i=1,i �= j

[ Ãk]i j =
m∑

i=1,i �= j

[ Ãk] j i , j = 1, . . . , m

0 ≤ [Ab]i j − ε · δi j , i, j = 1, . . . , 7, i �= j

0 ≤ −[Ab]i j + ui j · δi j , i, j = 1, . . . , 7, i �= j

0 ≤ [ Ãk]i j − ε · δi j , i, j = 1, . . . , 7, i �= j

0 ≤ −[ Ãk]i j + ui j · δi j , i, j = 1, . . . , 7, i �= j

where T = diag{c}, and the decision variables

[Ab]i j ≥ 0, [ Ãk]i j ≥ 0, for i, j = 1, . . . , 7, i �= j

[Ab]i i ≤ 0, for i = 1, . . . , 7

ε ≤ ci ≤ 1/ε, for i = 1, 2

δi j ∈ {0, 1} , for i, j = 1, . . . , 7, i �= j.

Solving for Ab with GLPK and applying (14) gives the kinetics matrix

Ak =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 13
3 0 2

3 0 2
3 0 0

0 0 0 0 0 0 0
0 0 −2 0 0 2 0
0 0 0 0 0 0 0
2
3 0 2

3 0 − 4
3 0 0

11
3 0 2

3 0 2
3 −2 0

0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and values c1 = 1, c2 = 1 (i.e. the linear transformation is the identity). The network
structure is given graphically in Fig. 1a. Although the rate constants differ due to
differing bounds, this has the same network structure as the dense weakly reversible
network obtained in [33].
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Fig. 1 Dense (a) and sparse (b)
weakly reversible networks
which are linearly conjugate to
N

X1+2X2 X1+X2

X1+3X2 2X1+X2

(a) X1+2X2 X1+X2

X1+3X2 2X1+X2

(b)

2/3

11/3

2/3
2/3

2/3

2/3

2/3

2

150

10

100

500

A sparse weakly reversible network is generated by optimizing

minimize
7∑

i, j=1

δi j

over the same constraint set. Solving for Ab with GLPK with the bound ε = 0.1 and
applying (14) gives the kinetic matrix

Ak =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−150 0 0 0 500 0 0
0 0 0 0 0 0 0
0 0 −100 0 0 10 0
0 0 0 0 0 0 0
0 0 100 0 −500 0 0

150 0 0 0 0 −10 0
0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and values c1 = 10 and c2 = 5. This is therefore an example of a network with a
non-trivial linear conjugacy and corresponds to the weakly reversible network given
in Fig. 1b.

Example 2 Consider the kinetics scheme

ẋ1 = x2
3 − x1x2 + x3x4 − 2x1x2

2 x3

ẋ2 = x2
3 − x1x2 + 2x3x4 − 4x1x2

2 x3

ẋ3 = −2x2
3 + x1x2 − x1x2

2 x3 + 2x3
4

ẋ4 = x1x2 − x3x4 + 4x1x2
2 x3 − 3x3

4 (17)

first considered in [31]. Using the algorithm given in [17] and [31], we can determine
a kinetic realization involving the complexes

C1 = 2X3, C2 = X3 + X4, C3 = X1 + 2X3, C4 = X2 + 2X3,

C5 = X3, C6 = X1 + X3 + X4, C7 = X2 + X3 + X4

C8 = X1 + X2, C9 = X1 + 2X2 + X3, C10 = X1, C11 = X2

C12 = X1 + X2 + X4, C13 = X1 + X2 + X3, C14 = 2X2 + X3

C15 = X1 + 2X2, C16 = X1 + 2X2 + X3 + X4

C17 = 3X4, C18 = X3 + 3X4, C19 = 2X4.
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Fig. 2 Weakly reversible
realization of the kinetics (17).
This realization is both dense
and sparse

2X3

X3+X4

X1+X2

X1+2X2+X33X4

0.1

0.1

0.1

0.001

0.001

0.01

In [33] the authors use the algorithm given in Sect. 2.3 to determine a dense
weakly reversible realization. The algorithm required three MILP optimizations, three
searches for strongly connected components, and took 80.5 s to complete. Carrying out
either the MILP optimization algorithm outlined in Sect. 3.2 for a dense or for a sparse
weakly reversible network, with bounds ε = 0.1 and ui j = 10, i, j = 1, . . . , 19, we
arrive at the solution

k̃18 = k̃29 = k̃82 = 0.1, k̃92 = k̃9(17) = 0.001, k̃(17)1 = 0.01,

c1 = c2 = c3 = c4 = 0.1

and the rest of the entries zero (the transformation is a scaling of the identity). This
corresponds to the network given in Fig. 2 which has the same network structure as the
networks obtained in [31] and [33]. Our algorithm was able to obtain the answer in a
single MILP optimization step and took less than a tenth of a second to compute. (The
difference in rate constants occurs as a result of the scaling of concentration variables
permitted by linear conjugacy.)

Example 3 Consider the kinetics scheme

ẋ1 = x1x2
2 − 2x2

1 + x1x2
3

ẋ2 = −x2
1 x2

2 + x1x2
3

ẋ3 = x2
1 − 3x1x2

3 .

Using the algorithm given in [17] and [31], we can determine a kinetic realization
involving the complexes

C1 = X1 + 2X2, C2 = 2X1 + 2X2, C3 = 2X1 + X2,

C4 = 2X1, C5 = X1, C6 = 2X1 + X3, C7 = X1 + 2X3

C8 = 2X1 + 2X3, C9 = X1 + X2 + 2X3, C10 = X1 + X3.

With this fixed complex set, we can carry out the MILP optimization procedure
outlined in Sect. 3.2 to find sparse and dense weakly reversible networks which are
linearly conjugate to a network with kinetics (18). We have

Y =
⎡

⎣
1 2 2 2 1 2 1 2 1 1
2 2 1 0 0 0 0 0 1 0
0 0 0 0 0 1 2 2 2 1

⎤

⎦
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X1+2X2 2X1+2X2

2X1X1+2X3

4

400

25

40

125

X1+2X2 2X1+2X2

2X1X1+2X3 2X1+X2

0.367

13.9 0.926 13.1
1.35

0.816

13.3 1.35

0.926

0.926

(a) (b)

Fig. 3 Weakly reversible networks which are linearly conjugate to a network with the kinetics (18). The
network in (a) is sparse while the network in (b) is dense. The parameter values in (b) have been rounded
to three significant figures

and

M =
⎡

⎣
1 0 0 −2 0 0 1 0 0 0
0 −1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 −3 0 0 0

⎤

⎦ .

With the bounds ε = 1/20 and ui j = 20 for i, j = 1, . . . , 10, i �= j , the algorithm
gives us the sparse network given in Fig. 3a (conjugacy constants c1 = 20, c2 = 2, and
c3 = 5) and the dense network given in Fig. 3b (conjugacy constants c1 = 20/3, c2 =
20/33, and c3 = 5/3). It is interesting to note that the sparse and dense networks utilize
different complexes and that the ratio of conjugacy constants differ between the sparse
and dense networks. It is worth noting that the sparse realization is also deficiency
zero so that the Deficiency Zero Theorem can be applied [15,18,20]. Consequently,
solutions of (18) satisfy all of the stringent dynamical restrictions typically reserved
for complex balanced systems.

5 Conclusions

In this paper we have proposed an algorithm for determining linearly conjugate weakly
reversible realizations of reaction networks. In contrast to the method presented in [33],
the present approach is based on the well-known fact that the kernel of the Kirchhoff
matrix of weakly reversible networks always contains a strictly positive vector. The
main advantages of our algorithm compared to [33] are the following. Firstly, linear
conjugacy theory [21] has been included into the optimization framework, and the
parameters of the corresponding linear coordinates transformation belong to the set
of unknowns. Secondly, our algorithm requires only one MILP step, and therefore
it is numerically significantly more effective than [33] if the problem dimension is
similar to what is shown in the examples. Thirdly, additional structural constraints
such as density or sparsity of the solution network can be directly included into the
optimization problem. The presented results clearly contribute to further widening
the application possibilities of the known strong results in chemical reaction network
theory.

There are still several very important questions which remain to be answered:

1. While the algorithm is effective and efficient for finding alternative networks for
a given kinetics, we are often interested in questions which can be answered for
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all kinetics satisfying certain initial structural properties (i.e. general rather than
specied rate constants). The algorithm is currently unable to answer such questions.

2. Many dynamical properties are known for systems satisfying network structure
properties not included in weak reversibility theory [8,9,12]. Extending the opti-
mization framework to include these results would greatly expand the scope of
chemical reaction networks with known dynamics.
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